A Case of Fungus Ball-Type Pansinusitis Due to *Fusarium proliferatum*

Seyed Jamal Hashemi · Mojtaba Mohammadi Ardehali · Sassan Rezaie · Ensieh Zibafar · Mohsen Gerami Shoar · Ali Rezaei-Matehkolaei · Hassan Ehteram · Mohammad Javad Najafzadeh · Mehdi Nazeri

Received: 10 January 2015 / Accepted: 20 May 2015 / Published online: 30 May 2015
© Springer Science+Business Media Dordrecht 2015

Abstract Incidence of fungal sinusitis due to the genus *Fusarium* has increased during the last two decades. We report a case of fungus ball sinusitis with multiple sinuses involvement in an Iranian 21-year-old woman. The patient was diagnosed as having a fungus ball-type sinusitis in computed tomography scan. The sinus biopsy revealed fungal structures on histopathological and direct microscopic examinations and a *Fusarium* species arose in culture. Partial sequencing of the translation elongation factor 1-alpha identified the isolate as *F. proliferatum*. Removal of all lesions by endoscopic surgery resulted in a favorable outcome. To the best of our knowledge, this is the first case of *F. proliferatum*-associated fungus ball which involved multi-sinus and highlights the efficiency of molecular methods for discrimination of fungal agents involved.

Keywords *Fusarium proliferatum* · Sinusitis · Fungus ball · TEF-1α

Introduction

The genus *Fusarium* comprises a large number of widely distributed species, of which mostly are plant parasites. Previously, it was considered as less-
frequent fungus of clinical interest; however, presently it is known to contain emerging agents that cause a broad spectrum of infections in human, especially in patients with hematological disorders [1–4]. Fungus ball, a chronic noninvasive fungal sinusitis, often occurs in immunocompetent hosts and less frequently caused by *Fusarium* species [1, 5]. Several fungal species such as members of the genera *Aspergillus, Penicillium, Alternaria* and *Mucor* have been reported as agents of fungus ball, but the role of other fungi like *Fusarium* species was neglected [6]. Among different *Fusarium* spp., *F. solani* is the most common species implicated in human infections and *F. proliferatum* less frequently come to clinical attention [4, 7–9]. In the present study, we report the first case of fungus ball-type pansinusitis caused by *F. proliferatum* in a healthy woman from West of Iran.

Case Report

On June 2011, a 21-year-old woman, resident in Marivan, West of Iran, referred to Otolaryngology, Head and Neck Surgery department, Amir-Alam Hospital, Tehran University of Medical Sciences, Tehran, Iran, with a history of chronic headache, nasal obstruction, anosmia and mucopurulent nasal discharge for the last 3 years. No abnormalities were recorded in routine examinations, but in computed tomography (CT) scan, a diffuse polyposis with decreased bone density in the septa of ethmoidal sinuses and obstruction of ostiomeatal complex (OMC), bilaterally, were mentioned. Her past medical history was also significant for an endoscopic nasal surgery and a course of therapy with cephalexin, cefixime, cotrimoxazole and steroid nasal spray which led to almost no improvement. A biopsy was performed, and early histopathological evaluation revealed inflammatory polyposis with edematous stroma and eosinophilic infiltration, focally hyalinization and fibrosis. Afterward, the recent CT scan showed recurrence of diffuse soft tissue occupying all ethmoid, sphenoid and maxillary sinuses and OMC. The diffuse hyperdense material which filled most of these sinusal cavities and mucosa and mycelia masses. The fungal disease was eradicated, and no evidence of residual fungus ball or recurrence was detected in postoperative mycological and endoscopic follow-up, 1 year later. For more investigation, the strain was subjected to molecular identification and in vitro antifungal susceptibility testing (AFST). Genomic DNA of the isolate was extracted from colony grown on 4 % Sabouraud dextrose agar (Biolife, Milan, Italy) supplemented with chloramphenicol (0.5 µg/ml) and incubated at 30 °C. After 5 days, colonies with cottony surface and white color were observed, which microscopically revealed the presence of hyaline, septate, branched hyphae with sickle-shaped, multicellular macroconidia suggestive of a *Fusarium* species [10]. The patient underwent pansinus surgery aiming to remove all involved mucosa and mycelia masses. The fungal disease was eradicated, and no evidence of residual fungus ball or recurrence was detected in postoperative mycological and endoscopic follow-up, 1 year later. For more investigation, the strain was subjected to molecular identification and in vitro antifungal susceptibility testing (AFST). Genomic DNA of the isolate was extracted from colony grown on 4 % Sabouraud dextrose agar for 5 days using a conical grinder (IDEA Trading, Corp., Tokyo, Japan) as previously described method [11]. Molecular identification was accomplished using translation elongation factor 1α (*TEF-1α*). Partial amplification of the coding gene was performed using primer pairs of EF1 (5’-ATGGGTAAAGGACAAGAC-3’) and EF2 (5’-GGAAGTACCAGTGTGTT-3’) [12], under previously described cycling conditions. The amplicon was then subjected to direct sequencing on an ABI 3730XL automatic sequencer (Applied Biosystems, Foster City, USA.). The BioEdit software (http://
www.mbio.ncsu.edu/bioedit/bioedit.html) was used for sequence assembly and alignment. The obtained sequence was compared to GenBank nucleotide sequences using BLAST algorithm and showed 99.8% identity to sequence of GenBank Accession No. JX118998 from F. proliferatum strain CBS 131785. The sequence was deposited in GenBank as accession JQ739146. For AFST, MICs (minimum inhibitory concentration) of strain toward eight antifungal drugs were evaluated by broth micro-dilution procedure according to the reference Clinical and Laboratory Standard Institute (CLSI) document M38-A2 [13]. Candida krusei (ATCC 6258), C. parapsilosis (ATCC 22019) and Paecilomyces variotii (ATCC 22319) were used for quality controls. The AFST of isolate led to MICs of 2.0, 64.0, 16.0, 2.0, 16.0 μg/ml for amphotericin B, fluconazole, itraconazole, voriconazole and posaconazole, respectively, and 8.0 μg/ml for isavuconazole, caspofungin and micafungin.

Discussion

From clinical viewpoint, in general, Fusarium species can cause all forms of fungal sinusitis including allergic, chronic noninvasive (fungus ball) and invasive sinusitis. Fungus balls are frequently caused by Aspergillus species and fusarial fungus balls, in particular, are rare [1, 14–16]. Paucity of the reports on infections by F. proliferatum makes it difficult to take the literature review. The species was reported from cases of onychomycosis [17], soft tissue infection [9], pneumonia [8], endophthalmitis [18], brain abscess [19] and disseminated infection [4, 7], which in many cases there were no predisposing conditions. Fungal balls occur in individuals with normal functioning immune system and usually involve a single sinus cavity, mainly the maxillary sinus. The sphenoid, ethmoid or frontal sinuses may involve less commonly [20]. To the extent of our knowledge, there is just one report on fungal ball-type sinusitis with multiple sinuses involvement that was caused by Schizophyllum commune [6]. But pansinus involvement due to F. proliferatum has not been documented, and F. proliferatum is an uncommon agent of fungal sinusitis among Fusarium species [14, 16]. As a whole, the definite process by which a fungus ball forms is unknown but overfilling of maxillary cavities during endodontic treatment of maxillary molar was
proposed as a nidus for development [20]. It was also narrated as a secondary condition due to a chronic sinusitis, and in most cases of recurrent sinusitis, nasal endoscopy was shown leading to extension of infection from the nose into the larger sinuses [14]. On the other hand, OMC obstruction, as seen in our case, was found to have no correlation with the growth of maxillary fungus ball which disproves these hypotheses [21]. In the case of our patient, she had never had a dental procedure and seemingly the last nasal endoscopic surgery led to development of the infection as a pansinusitis fungus ball. Due to unknown reasons, and as seen in our patient, fungal balls more commonly occur in middle- or older-age females [20, 22]. The diagnosis of fusariosis is mainly based on histopathological and mycological findings [10]. From diagnostic standpoint, Fusarium species are known to develop dichotomous hyaline filaments with acute and right angles in tissues similar to those of Aspergillus species. But as observed in our case (Fig. 2a, b), Fusarium spp. have the ability to sporulate in tissues and develop specific reproductive yeast-like conidia in a phenomenon known as “adventitious sporulation.” These diagnostic clues are helpful to distinguish Fusarium infections from other saprobes [23]. The definite diagnosis, which is of epidemiological and medical importance, needs the isolation of Fusarium spp. from clinical samples. Fusaria can morphologically be identified via the production of hyaline, banana-shaped, long and multisepitate macroconidia at the genus level [10], but delineation down to the species level is difficult and may require sequencing of translation elongation factor 1-alpha (TEF-1α) as golden standard [24], and in this regard, partial sequencing of TEF-1α enabled us to identify our isolate as F. proliferatum. From therapeutic point of view, since there is no effective medical therapy, some clinicians recommend endonasal removal of all lesions by endoscopic approaches as definitive treatment of choice for fungus ball [14, 25]. However, it is logical to consider AFST pattern in fungal sinusitis, especially in cases of recurrence or infection due to uncommon species. Albeit different in AFST patterns, Fusarium species are highly refractory to the most antifungal agents [1]. Our F. proliferatum isolate was almost resistant to all tested antifungals in vitro, but fortunately, the patient recovered after functional endoscopic sinus surgery (FESS). The presented case has greatly extended our knowledge on the causatives

References